skip to main content


Search for: All records

Creators/Authors contains: "Young, Truman P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Year of establishment can be a critical driver of plant communities with the establishment stage of community development particularly susceptible to factors including ambient rain, temperature, and other temporally variable drivers (e.g., seed and seedling predators). However, while year effects have been shown to drive community structure at local (patch) scales, it is yet unexplored how these within‐patch effects scale up to drive landscape‐level patterns of biodiversity. These dynamics are likely to be critical but are overlooked in many systems including those with high‐frequency disturbance regimes or active management. Here we leveraged a series of field‐based grassland mesocosms established identically at three sites across 5 years, and each monitored for 4–8 years. We compared the strength of these temporal and spatial drivers (year effects and site effects) on consequent patterns of spatial and temporal variability (beta diversity and turnover) between plots seeded with native perennial species versus those seeded with nonnative annual species. The composition of plots seeded with perennial species showed strong effects of planting year and consequently exhibited higher beta diversity within sites (across mesocosms established in five different years within sites), while plots seeded with annual species had higher between‐site variation but low beta diversity within sites. Plots with annual species were also more temporally variable than plots with perennial species. These findings have important implications for our understanding of key drivers of biodiversity across landscapes. Specifically, we showed that variable trajectories in community composition generated by site and year effects during establishment can promote beta diversity across landscapes dominated by perennial species, but are considerably less impactful in annual‐dominated systems. These findings further our understanding of the importance of assembly dynamics on landscape‐scale patterns of diversity, and have important management implications for restoration efforts.

     
    more » « less
  2. There has been a long-standing interest in understanding how interactions between fire and herbivory influence woody vegetation dynamics in savanna ecosystems. However, controlled, replicated experiments examining how different fire regimes interact with different herbivore groups are rare. We tested the effects of single and repeated burns, crossed with six replicated herbivore treatments, on the mortality and growth of woody vegetation in the Kenya Long-term Exclosure Experiment plots located in a semi-arid savanna system in central Kenya. Burned plots experienced higher tree mortality overall, but differences between burns and non-burns were only significant in plots excluding all wild herbivores and in plots accessible to megaherbivores. Cattle ameliorated the negative effects of repeat burns on tree mortality, perhaps by suppressing fuel load accumulation. Across all herbivore treatments, trees experienced a significant reduction in height within the first two years after fire (top-kill), which was followed by a gradual recovery. Saplings and coppices subjected to repeated burns regrew faster than those that were burned once, except in the presence of megaherbivores. This study highlights strong context-dependent interactions between fire and different herbivore groups, and extends previous approaches to understanding fire–herbivory interactions, which have tended to lump the effects of different herbivore groups, or study them separately. 
    more » « less
  3. Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics. 
    more » « less
  4. Over a quarter of the world’s land surface is grazed by cattle and other livestock, which are replacing wild herbivores and widely regarded as drivers of global biodiversity declines. The effects of livestock presence versus absence on wild herbivores are well documented. However, the environmental context-specific effects of cattle stocking rate on biodiversity and livestock production are poorly understood, precluding nuanced rangeland management recommendations. To address this, we used a long term exclosure experiment in a semi-arid savanna ecosystem in central Kenya that selectively excludes cattle (at different stocking rates), wild mesoherbivores, and megaherbivores. We investigated the individual and interactive effects of cattle stocking rate (zero/moderate/high) and megaherbivore (>1,000 kg) accessibility on habitat use (measured as dung density) by two dominant wild mesoherbivores (50–1,000 kg; zebra Equus quagga and eland Taurotragus oryx ) across the “wet” and “dry” seasons. To explore potential tradeoffs or co-benefits between cattle production and wildlife conservation, we tested for individual and interactive effects of cattle stocking rate and accessibility by wild mesoherbivores and megaherbivores (collectively, large wild herbivores) on the foraging efficiency of cattle across both seasons. Eland habitat use was reduced by cattle at moderate and high stocking rates across both dry and wet seasons and regardless of megaherbivore accessibility. We observed a positive effect of megaherbivores on zebra habitat use at moderate, but not high, stocking rates. Cattle foraging efficiency (g dry matter step –1 min –1 ) was lower in the high compared to moderate stocking rate treatments during the dry season, and was non-additively reduced by wild mesoherbivores and high cattle stocking rates during the wet season. These results show that high stocking rates are detrimental to wild mesoherbivore habitat use and cattle foraging efficiency, while reducing to moderate stocking rates can benefit zebra habitat use and cattle foraging efficiency. Our findings demonstrate that ecosystem management and restoration efforts across African rangelands that involve reducing cattle stocking rates may represent a win-win for wild herbivore conservation and individual performance of livestock. 
    more » « less
  5. Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  6. Serrano, Emmanuel (Ed.)
    Excluding large native mammals is an inverse test of rewilding. A 25-year exclosure experiment in an African savanna rangeland offers insight into the potentials and pitfalls of the rewilding endeavor as they relate to the native plant community. A broad theme that has emerged from this research is that entire plant communities, as well as individual plants, adjust to the absence of herbivores in ways that can ill-prepare them for the return of these herbivores. Three lines of evidence suggest that these “naïve” individuals, populations, and communities are likely to initially suffer from herbivore rewilding. First, plots protected from wild herbivores for the past 25 years have developed rich diversity of woody plants that are absent from unfenced plots, and presumably would disappear upon rewilding. Second, individuals of the dominant tree in this system, Acacia drepanolobium , greatly reduce their defences in the absence of browsers, and the sudden arrival of these herbivores (in this case, through a temporary fence break), resulted in far greater elephant damage than for their conspecifics in adjacent plots that had been continually exposed to herbivory. Third, the removal of herbivores favoured the most palatable grass species, and a large number of rarer species, which presumably would be at risk from herbivore re-introduction. In summary, the native communities that we observe in defaunated landscapes may be very different from their pre-defaunation states, and we are likely to see some large changes to these plant communities upon rewilding with large herbivores, including potential reductions in plant diversity. Lastly, our experimental manipulation of cattle represents an additional test of the role of livestock in rewilding. Cattle are in many ways ecologically dissimilar to wildlife (in particular their greater densities), but in other ways they may serve as ecological surrogates for wildlife, which could buffer ecosystems from some of the ecological costs of rewilding. More fundamentally, African savannah ecosystems represent a challenge to traditional Western definitions of “wilderness” as ecosystems free of human impacts. We support the suggestion that as we “rewild” our biodiversity landscapes, we redefine “wildness” in the 21 st Century to be inclusive of (low impact, and sometimes traditional) human practices that are compatible with the sustainability of native (and re-introduced) biodiversity. 
    more » « less
  7. null (Ed.)